“神舟八号”飞船与“天宫一号”在今年11月已顺利完成了两次无人对接实验。如图是“天宫一号”和“神舟八
B |
神舟号飞船的资料
神舟飞船是中国自行研制,具有完全自主知识产权,达到或优于国际第三代载人飞船技术的飞船。 神舟号飞船是采用三舱一段,即由返回舱、轨道舱、推进舱和附加段构成,由13个分系统组成。
神舟号飞船与国外第三代飞船相比,具有起点高、具备留轨利用能力等特点。神舟系列载人飞船由专门为其研制的长征二号F火箭发射升空,发射基地是酒泉卫星发射中心,回收地点在内蒙古中部的四子王旗航天着陆场。
一、轨道舱
飞船结构分为:轨道舱、返回舱、推进舱、附加段,四部分,“神舟”飞船的轨道舱是一个圆柱体,总长度为2.8米,最大直径2.27米,一端与返回舱相通,另一端与空间对接机构连接。轨道舱被称为“多功能厅”,因为几名航天员除了升空和返回时要进入返回舱以外,其它时间都在轨道舱里。
轨道舱集工作、吃饭、睡觉和清洁等诸多功能于一体。为了使轨道舱在独自飞行的阶段可以获得电力,轨道舱的两侧安装了太阳电池板翼,每块太阳翼除去三角部分面积为2.0×3.4米,轨道舱自由飞行时,可以由它提供0.5千瓦以上的电力。
轨道舱尾部有4组小的推进发动机,每组4个,为飞船提供辅助推力和轨道舱分离后继续保持轨道运动的能力;轨道舱一侧靠近返回舱部分有一个圆形的舱门,为航天员进出轨道舱提供了通道,不过,该舱门的最大直径仅65厘米,只有身体灵巧、受过专门训练的人才能进出自由。
舱门的上面有轨道舱的观察窗。轨道舱是飞船进入轨道后航天员工作、生活的场所。舱内除备有食物、饮水和大小便收集器等生活装置外,还有空间应用和科学试验用的仪器设备。返回舱返回后,轨道舱相当于一颗对地观察卫星或太空实验室,它将继续留在轨道上工作半年左右。
轨道舱留轨利用是中国飞船的一大特色,俄罗斯和美国飞船的轨道舱和返回舱分离后,一般是废弃不用的。作为航天员的“太空卧室”,轨道舱的环境很舒适,舱内温度一般在17至25摄氏度之间。
二、返回舱
返回舱又称座舱,长2.00米,直径2.40米(不包括防热层)。它是航天员的“驾驶室”。是航天员往返太空时乘坐的舱段,为密闭结构,前端有舱门。
神舟飞船的返回舱呈钟形,有舱门与轨道舱相通。返回舱式飞船的指挥控制中心,内设可供3名航天员斜躺的座椅,供航天员起飞、上升和返回阶段乘坐。座椅前下方是仪表板、手控操纵手柄和光学瞄准镜等,显示飞船上各系统机器设备的状况。
航天员通过这些仪表进行监视,并在必要时控制飞船上系统机器设备的工作。轨道舱和返回舱均是密闭的舱段,内有环境控制和生命保障系统,确保舱内充满一个大气压力的氧氮混合气体,并将温度和湿度调节到人体合适的范围,确保航天员在整个飞行任务过程中的生命安全。
另外,舱内还安装了供着陆用的主、备两具降落伞。神舟号飞船的返回舱侧壁上开设了两个圆形窗口,一个用于航天员观测窗外的情景,另一个供航天员操作光学瞄准镜观测地面驾驶飞船。
返回舱的底座是金属架层密封结构,上面安装了返回舱的仪器设备,该底座重量轻便,且十分坚固,在返回舱返回地面进入大气层时,保护返回舱不被炙热的大气烧毁。
三、推进舱
推进舱又叫仪器舱或设备舱。推进舱长3.05米,直径2.50米,底部直径2.80米。安装推进系统、电源、轨道制动,并为航天员提供氧气和水。
它呈圆柱形,内部装载推进系统的发动机和推进剂,为飞船提供调整姿态和轨道以及制动减速所需要的动力,还有电源、环境控制和通信等系统的部分设备。两侧各有一对太阳翼,除去三角部分,太阳翼的面积为2.0×7.5米。
与前面轨道舱的电池翼加起来,产生的电力将三倍于联盟号,平均1.5千瓦以上,差不多相当于富康AX新浪潮汽车的电源所提供功率。这几块电池翼除了所提供的电力较大之外,它还可以绕连接点转动,这样不管飞船怎样运动,它始终可以保持最佳方向获得最大电力,免去了“翘向太阳”所要进行的大量机动,这样可以在保证太阳电池阵对日定向的同时进行飞船对地的不间断观测。
设备舱的尾部是飞船的推进系统。主推进系统由4个大型主发动机组成,它们在推进舱的底部正中。在推进舱侧裙内四周又分别布置了4对纠正姿态用的小推进器,说它们小是和主推进器比,与其他辅助推进器比它们可大很多。另外推进舱侧裙外还有辅助用的小型推进器。
四、神舟飞船附加段
附加段也叫过渡段,是为将来与另一艘飞船或空间站交会对接做准备用的。在载人飞行及交会对接前,他也可以安装各种仪器用于空间探测。
对于附加段现阶段的设备没有官方介绍,但是一些业内人士进行了大胆的推测,如:其中一个半环型装置,据推测是用来安装方形的仪器装置。而三个相互垂直并可伸出的0.4米的探针被推测为可能是导航系统的一部分或对接系统的一部分。
因为美国的阿波罗飞船上曾有类似的装置用来进行对接。神舟飞船轨道舱前端可能装有俄罗斯式的对接系统。但这些装置可能只是一种试验型,在将来执行与太空站对接的任务时肯定会被新型对接系统所替换。
扩展资料:
神州飞船各型号概览
1、神舟一号,发射时间:1999-11-20 06:30,返回时间:1999-11-21 03:41,乘组:无人飞船,飞行时间:21小时11分。
2、神舟二号,发射时间:2001-01-10 01:00,返回时间:2001-01-16 19:22,乘组:无人飞船,飞行时间:6天18小时22分。
3、神舟三号,发射时间:2002-03-25 22:15,返回时间:2002-04-01 16:54,乘组:搭载模拟人,飞行时间:6天18小时39分。
4、神舟四号,发射时间:2002-12-30 00:40,返回时间:2003-01-05 19:16,乘组:搭载模拟人,飞行时间:6天18小时36分。
5、神舟五号,发射时间:2003-10-15 09:00,返回时间:2003-10-16 06:28,乘组:杨利伟,飞行时间:21小时28分。
6、神舟六号,发射时间:2005-10-12 09:00,返回时间:2005-10-17 04:32,乘组:费俊龙、聂海胜,飞行时间:4天19时32分。
7、神舟七号,发射时间:2008-09-25 21:10,返回时间:2008-09-28 17:37,乘组:翟志刚、刘伯明、景海鹏,飞行时间:2天20小时30分。
8、神舟八号,发射时间:2011-11-01 05:58,返回时间:2011-11-17 19:32,乘组:搭载模拟人,飞行时间:18天。
9、神舟九号,发射时间:2012-06-16 18:37,返回时间:2012-06-29 10:03,乘组:景海鹏、刘旺、刘洋,飞行时间:12天。
10、神舟十号,发射时间:2013-06-11 17:38,返回时间:2013-06-26 08:07,乘组:聂海胜、张晓光、王亚平,飞行时间:15天。
11、神舟十一号,发射时间:2016-10-17 07:30,返回时间:2016-11-18 13:33,乘组:景海鹏、陈冬,飞行时间:32天。
参考资料:百度百科—神舟飞船
2013年6月11日17时38分“神舟十号”飞船搭载三位航天员飞向太空,“神舟十号”是中国“神舟”号系列飞船
ABD |
试题分析:根据万有引力提供向心力 可知 , , , 可知,答案为ABD 点评:本题考查了万有引力提供向心力的常见公式的推导和理解。 |
天宫系列和嫦娥系列的区别
天宫系列和嫦娥系列的区别是:天宫系列的研发比嫦娥系列的早,且天宫系列的主要是空间实验室,而嫦娥系列主要用于探测。“天宫”是我国的空间实验室,相当于太空基地。我国目前还没有空间站。空间站是一种可供多名航天员巡访、长期居住和工作的航天器。“天宫一号”是中国第一个目标飞行器,于2011年9月29日在酒泉卫星发射中心由长征二号FT1火箭运载成功升空。
“天宫二号”,是继“天宫一号”后中国自主研发的第二个空间实验室,也是中国第一个真正意义上的空间实验室,于2016年9月15日在酒泉卫星发射中心发射成功。
迄今为止,“天宫”系列与“神舟”系列实现了四次对接,分别是2011年11月3日“天宫一号”与“神舟八号”成功对接,2012年6月18日“天宫一号”与“神舟九号”成功对接,2013年6月13日“天宫一号”与“神舟十号”成功对接,以及2016年10月19日“天宫二号”与“神舟十一号”自动交会对接成功。
“嫦娥工程”是2004年我国正式开展月球探测工程。迄今为止,我国“嫦娥”系列均在四川西昌发射升空。2007年10月24日,第一颗绕月卫星“嫦娥一号”成功发射升空。2010年10月1日“嫦娥二号”顺利发射。
2013年12月2日,嫦娥三号探测器发射成功,它是中国第一个月球软着陆的无人登月探测器。嫦娥三号探测器由月球软着陆器和月面巡视器(又称“玉兔号”月球车)组成。2018年12月8日,“嫦娥四号”探测器携带“玉兔二号”成功发射。2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面,并通过“鹊桥”中继星传回了世界第一张近距离拍摄的月背影像图。
天宫一号的简介
天宫一号是中国第一个目标飞行器和空间实验室,于2011年9月29日21时16分3秒在酒泉卫星发射中心发射,飞行器全长10.4米,最大直径3.35米,由实验舱和资源舱构成。
它的发射标志着中国迈入中国航天“三步走”战略的第二步第二阶段。[1]2011年11月3日凌晨实现与神舟八号飞船的对接任务。2012年6月18日下午(14时14分)与神舟九号对接成功。
天宫一号目标飞行器的设计在轨寿命是2年,在分别与神舟八号、神舟九号和神舟十号飞船进行交会对接后,最终将主动离轨,陨落南太平洋。
2016年03月21日中国载人航天工程办公室表示,目前天宫一号的飞行轨道仍在持续、密切的跟踪监视之中。2018年3月25日,天宫一号运行在平均高度约216.2公里的轨道上,即将再入大气层烧毁。
2018年4月2日8时15分左右,天宫一号目标飞行器已再入大气层,再入落区位于南太平洋中部区域,绝大部分器件在再入大气层过程中烧蚀销毁。
扩展资料:
发射背景:
1992年9月21日,中央正式批准实施中国载人航天工程,即“921工程”,在“921工程”设计之初,便确定了载人航天“三步走”的发展战略。
1999年11月20日,中国成功发射第一艘无人试验飞船神舟一号,初步实现了第一步的航天器天地往返。此后,中国又先后发射神舟系列的4艘飞船。
并在神舟五号发射、杨利伟成为中国“太空第一人”后,完成了“三步走”战略的第一步。2005年起,神舟六号和神舟七号相继发射。
拉开了“三步走”战略第二步的序幕,并完成了前半部分,而天宫一号则将完成第二步后半部分的任务——进行空间交会对接,建立空间实验室。
背后故事:
“天宫一号”从2006年开始研制,整个过程从方案设计到初样再到正样,通过了大量的计算、仿真和各种地面试验的验证,竭尽全力做到可靠和安全。
为了万无一失,研制团队先假设某一系统失效,然后列出几种可能导致失效的故障,再分析每种故障的原因是什么,一层层查下去,从单机到部件再到每一个零件,任何一件产品都要考虑进去。
只做到这一点还不够,他们还要反过来想,如果某一个零部件失效,可能对系统造成什么样的影响,有可能出现什么样的问题,应该制定怎么样的应对措施。
在研制的全过程,只要是能想到的,验证试验能做的,都要一次又一次地去做。“天宫一号”的设计寿命是两年。在这两年时间里,它能否与“神八”“神九”“神十”顺利实现对接。
电源系统是一个关键,因为没有电能,任何太空飞行器都是一堆太空垃圾。对“天宫一号”来说,每24个小时就有16个昼夜;其中每个白天约30分钟,每个夜晚约60分钟。
这面对太阳的30分钟时间,就是它的太阳能帆板发电的时候;其中一部分电能直接供用电器使用,其余的电能则储存在100多节镍氢电池里,供黑夜时使用。
“天宫一号”的太阳能帆板看起来和马路上太阳能路灯的帆板没有什么不同,都是银色的,薄薄的,一格一格的;但它所用的材料却相当尖端。
而且,它始终跟着太阳转,角度保持在50~60度,确保有足够的日照可以发电。尽管“天宫一号”挺省电的,整个用电量只相当于两台家用空调。
但问题的关键在于,如何确保这100多节镍氢电池在两年的时间里不“罢工”,不出任何一点小毛病?而且,为了安全起见,最少也要保持电池中有八成电量的储备。
为此,研制团队模拟真空、上百度温差等极端太空环境,反复做了无数次实验。这还不够,还必须考虑火箭发射时的冲击、震动、热量等各种情况,反反复复进行试验。
参考资料来源:百度百科-天宫一号